
THE STRUCTURE OF HIGH-ANGLE GRAIN BOUNDARIES* 

D. G. BRANDONt 

A coincidence model of high-angle grain boundaries can be extended to include deviations from coinci- 
dence. The generalised boundary has a terraced structure, corresponding to the densely packed planes in 
the coincidence lattice, and a superimposed dislocation network, corresponding to a sub-boundary in the 
coincidence lattice. This model is a natural extension of previous dislocation models and models based on 
coincidence relationships. The model explains many of the observed properties of grain boundaries and 
should have wide validity for the cubic system. 

STRUCTURE DE JOINTS DE GRAINS A GRANDS ANGLES 

Un mod& de oomcidence pour les joints de grains B grand angle peut etre modifie de maniere B 
incline les &arts de co’incidence. 

Le joint generalise presente une structure en terrace, correspondant aux plans denses dans le reseau de 
coincidence et un reseau supplementaire de dislocations correspondant iL un sous-joint dans le reseau de 
comcidence. 

Ce modele est une extension naturelle des modeles de dislocations snterieurs et de modeles Btsblis sur 
la base des relations de coincidence. 11 explique un grand nombre des proprietes observees des joints 
de greins et il semblerait valable dans de nombreux cas pour le systeme cubique. 

DIE STRUKTUR VON GROBWINKELKORNGRENZEN 

Ein Koinzidenzmodell von GroDwinkelkorngrenzen kann so erweitert werden, da6 es such Abweichun- 
gen von der Koinzidenz einschliefit. Die allgemeine Korngrenze hat eine Stufenstruktur, entsprechend den 
dichtest gepackten Ebenen im Koinzidenzgitter, und ein iiberlagertes Versetzungsnetzwerk, entsprechend 
einer Subkorngrenze im Koinzidenzgitter. Dieses Model1 ist eine natiirliche Erweiterung friiherer 
Versetzungsmodelle und von Modellen, die auf Koinzidenzbeziehungen beruhen. Des Model1 erkliirt 
viele der beobachteten Korngrenzeneigenschaften und sollte in kubischen Systemen in vielen Fiillen 
zutreffend sein. 

1. INTRODUCTION 

In a previous publication(l) field-ion microscope 
observations of grain boundaries were reported and 
the observations were correlated with a model for 
high-angle grain boundaries based on an analysis of 
the coincidence relationships possible between two 
grains of a cubic system. In this model deviations 
from coincidence are regarded as being produced by 
a sub-boundary in the coincidence lattice coplanar 
with the grain boundary, in this way a high degree of 
coincidence can persist across a boundary whose axis 
of misorientation and angular misorientation do not 
fulfill the exact coincidence conditions. 

The purpose of the present paper is to describe the 
previous model more fully and to examine some of 
the consequences and limitations of this model. The 
relation between the present model and previous 
models of the grain boundary structure will also be 
discussed. 

2. THE MODEL 

2.1 Coincidence boundaries 

For certain specific axes and angles of misorientation 
two grains separated by a boundary will hold a 
number of lattice sites in common. Boundaries to 
separating grains having these special axes and angles 

* Received November 29, 1965; revised January 7, 1966. 
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of misorientation are known as coincidence bound- 
aries,(2) and if the density of coincident lattice sites 
is high such boundaries may have unusual properties, 
for example a very high mobility.(3) 

The simplest coincidence boundary is the twin 
boundary, for which the reciprocal density of common 
lattice points in the two grains, E, is 3; but coin- 
cidence boundaries exist for all odd values of Xc. Any 
coincidence relationship can be expressed by an 
axis-angle pair, and in the cubic system each such 
relationship can be described by 24 different axis- 
angle pairs, corresponding to the 24 symmetry 
elements of the cubic system.c4) 

The reciprocal density of common lattice points, 
E, is not simply related to the reciprocal density of 
coincidence sites in an arbitrary boundary plane, u. 
For example, in Fig. 1 it is possible to find planes for 
which CT is either 1, C or co. However, a boundary 
in a densely packed plane of the coincidence lattice 
must always correspond to c = 1, while it is obvious 
that a boundary passing between the planes of the 
coincidence lattice corresponds to a coincidence site 
density of 0, i.e. 0 = co. If Y, is large the most 
densely packed plane in the coincidence lattice is a 
plane of low atomic density in the real lattice, so that 
o = 1 does not necessarily imply a dense packing of 
coincident sites. However, boundary planes corre- 
sponding to o = 1 are expected to have the lowest 
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FIG. 1. Reciprocal density of common lattice points in the 
boundary plane, 6, as a function of the boundary orienta- 
tion. The reciprocal density of lattice points in the 

coincidence lattice, X, is 19 in this example. 

energy, so that boundaries running at a small angle 

to these planes are expected to take up a stepped 

structure.(l) 

A fuller discussion of the conditions for and cal- 

culations of coincidence relations has been given 

elsewhere.(ls5) 

2.2 Step dislocations 

The step arising when a coincidence boundary 

makes a small angle with a densely packed plane of 

the coincidence lattice is effectively a small region of 

disorder [Fig. 2(a)]. For an arbitrary boundary 

orientation the steps will form a terraced structure 

at the boundary. Coincidence boundary migration 

can be thought of as a result of step migration along 

the boundary, and under suitable conditions multiple 

steps might be expected, for example as a result of a 

“pile-up” of steps at a precipitate particle or at a 

step locked by segregation. 

These steps can be described in terms analogous to 

those used to define van der Merwe dislocations@) at a 

partially coherent interface. There is no long-range 

strain field associated with the steps, but a step can 

nucleate dislocations if a suitable stress is applied to 

the boundary [Fig. 2(b)]. Generation of a dislocation 

leaves behind a strain field corresponding to a dis- 

location of opposite sign at the step. Repeated 

dislocation generation must be accompanied by 

simultaneous ejection of dislocations into the neigh- 

bouring grain with a corresponding increase in 

grain-boundary area. 

2.3 Deviation from coincidence 

It is convenient to distinguish between changes in 

angular misorientation and changes in axis of mis- 

orientation, although there is no significant difference 

in the resultant boundary structure (an angular 

deviation from coincidence in a relationship defined 

by one axis-angle pair may be equivalent to a 

deviation in the axis, when the same coincidence 

relationship is described by a different axis-angle 
pair). Deviations from the angular misorientation 

required for exact, coincidence can be described by a 

subboundary network of dislocations superimposed 

on the coincidence boundary with its axis of mis- 

orientation parallel to the chosen axis of misorientation 

of the coincidence boundary. To avoid ambiguity, 

the Burgers vectors of the dislocations in the sub- 

boundary are defined by reference to the coincidence 

lattice, which is common to both grains. The sub- 

boundary dislocations will then have partial Burgers’ 

vectors in the coincidence lattice which in general* do 

not correspond to unit lattice vectors in either of the 

two grains (Fig. 3). 

Deviations in the axis of misorientation without 

any appreciable change in the angular misorientation 

can occur if the axis of misorientation of the super- 

imposed subboundary lies perpendicular to the axis of 

misorientation of the coincidence boundary. Thus if 

the coincidence boundary is a pure tilt boundary 

containing the axis of misorientation, the sub- 

boundary will be pure twist. The coincidence bound- 

ary will then contain a superimposed network of 

screw dislocations. 

Clearly, in the general case the axis of misori- 

entation of the sub-boundary will lie at some arbitrary 

angle to the axis of misorientation chosen to describe 

the coincidence lattice, so that deviations in both the 

misorientation axis and the angular misorientation 

will occur. 

3. LIMITATIONS OF THE MODEL 

3.1 Xigni&unce of coincidence 

As pointed out previously, the most densely packed 

plane in the coincidence lattice is usually a plane of 

low atomic density in the real lattice. This is brought 

out by Table 1, which gives the values of x for the 

first twelve coincident lattices, the corresponding 

twinning directions for b.c.c. and f.c.c. crystals, the 

most, densely packed planes in the coincidence lattice 

and the separation of the corresponding planes in the 

real lattice in terms of the separation of the close 

packed planes. It is clear from Table 1 that the 

reciprocal density of common lattice points in a 

boundary is not a measure of the actual degree of fit 

* Dislocations in a coherent twin boundary are an 
exception. 
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FIG. 2. (a) Step formation in a C = 11 ooincidence boundary in the b.c.c. lattice (b) Generation of B 

dislocation at the step shown in (a). 

Fro. 3. Coincidence sub-boundary dislocations in the Z = 11 boundary of Fig. 2. 
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TABLE 1 

Twinning direction Densely packed plane Relative separation of 

c 
densely packed planes 

b.c.c. f.c.c. b.c.c. f.c.c. b.c.c. f.c.c. 

3 111 
5 012 
7 123 
9 122 

11 113 
13a 320 
13b 134 
15 125 
17a 140 
17b 223 
19a 133 
19b 235 

112 
013 
123 
114 
233 
510 
134 
125 
350 
334 
116 
235 

112 
013 
123 
114 
233 
510 
134 
125 
350 
334 
116 
235 

111 0.58 
012 0.45 
123 0.38 
122 0.33 
113 0.30 
320 0.28 
134 0.28 
125 0.26 
140 0.24 
223 0.24 
133 0.23 
235 0.23 

1 
0.39 
0.23 
0.29 
0.52 
0.24 
0.17 
0.16 
0.21 
0.21 
0.40 
0.14 

a*b two different coincidence lattice with the same C corresponding to two solutions of the equation 
h2 + k2 + P = nC where n = 1 or 2. 

between the two lattices but refers only to the two- 

dimensional surface which defines the boundary. 

Thus in Fig. 4(a) the I; = 11 coincidence lattice in a 

b.c.c. crystal generates a boundary at which the 

disturbance of order includes the boundary plane and 

the neighbouring planes in the real lattice each side 

of the boundary ((332) planes in this case). In the 

C = 19 coincidence lattice [Fig. 4(b)] the disturbance 

extends to two (116) lattice planes either side of the 

boundary. In comparing Fig. 4(a) and Fig. 4(b) it 

should be noted that the width of the boundary zone 

does not change appreciably, because the spacing of 

the (116) lattice planes is less than that of the (332) 

planes ; however, Fig. 4 does illustrate the dependence 

of the degree of tit between the two crystals on the 

atomic density in the densely packed plane of the 

coincidence lattice. Coincidence has little significance 

if this density is low, i.e. if C is large. 

3.2 Permissible deviations from coincidence 

In the previous publication(l) it was noted that the 

superposition of a coincidence lattice sub-boundary 

0 Afom positions in planes 
obove and below diagmm 

l Coincidence sifes 

on a coincidence boundary was a simple extension 

of the model proposed by Read and Shockley(‘) for 

a twin boundary containing excess dislocations. It 

was also noted that the density of dislocations one 

could introduce into a coincidence boundary without 

destroying coincidence was limited by the density of 

coincident lattice at the boundary. Since the density 

of coincident sites decreases with increasing 2: the 

maximum permissible density of boundary dis- 

locations must also decrease with EC, so that only 

coincidence boundaries with small E will persist over 

any appreciable range of orientation. 

The maximum permissible deviation from coin- 

cidence may reasonably be assumed to be given by an 

equation of the form 8 = O,(Z)-*, where 8, is a 

constant, 8, N 15”. Thus for the real lattice, E = 1, 

and 19 N 15”, corresponding to the generally accepted 

transition point from the dislocation sub-boundary to 

the high-angle grain boundary.t7) 

Some idea of the range of validity of the coincidence 

model is given by Fig. 5, where the twinning directions 

corresponding to each of the 12 coincidence lattices 

_ Boundary 
plane 

lb) 
FIG. 4. Dependence of degree of fit at low energy boundaries on 2. 

(a) Boundary in C = 11 coincidence lattice. 
(b) Boundary in C = 19 coincidence lattice. 
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b.c.c 

FIG. 5. Twinning systems for coincidence lattices showing estimated range of orient&ion 
over which some coincidence is maintained. 

listed above have been plotted on a stereographic 
triangle together with the estimated maximum 
angular deviation from coincidence. 

Limiting the number of possible coincidence 
lattices to 12, we can estimate the coverage given by 
the coincidence model. The solid angle included by 
the stereographic triangle is 7-r/6 and the total angular 
rotation to be considered is 27~. Each coincidence 

lattice covers a range 47~[1 - cos (e,@;l] in axis of 

misorientation and a range e&‘%in angular deviation. 
Su~ing over the first 12 coincidence lattices and 
dividing by the total angular range to be covered, 
z-16 x 297, we find for 8, = ~112 a proportional cover- 
age of 0.42.” Clearly the coincidence lattice model 
should have a high degree of validity in the cubic system. 

4. COMPARISON WITH OTHER MODELS 

The present model of the boundary is a simple 
extension and combination of the model baaed on 
dense arrays of dislocations proposed by Read and 
Shockley(‘) and the coincidence lattice model pro- 
posed by Kronberg and Wilson.(2) A grain boundary 
has associated with it five degrees of freedom, three 
that define the angle and axis of misorientation and 
two that define the plane of the boundary. Early 
models of high-angle grain boundaries assumed the 
structure to be independent of all five degrees of 
freedom.(8) The simple coincidence theory’s) brings 

out the dependence of the structure on the angle and 
axis of misorientation but ignores the two degrees of 
freedom associated with the plane of the boundary. In 
the present model the structure of a coincidence 
boundary depends on all five degrees of freedom. 
At the same time the number of axis-angle pairs 
describing coinoidence boundaries is seen to be far 
greater than previously realised. 

The anisotropic nature of the boundary region was 
postulated by Mott@) in an attempt to explain grain 

* Suiter (private communication) has pointed out that this 
is an overestimate, since it includes some coverage in neigh- 
bouring triangles. 

boundary diffusion data, but, as in the early models,(*) 
Mott regarded all high-angle boundariesas structurally 
equivalent. Local variations in boundary structure 
were given a more precise meaning by Read and 
Shockleyc’) who used a description in terms of two 
arrays of dislocations, a dense dislocation array 
(corresponding to the coincidence boundary in the 
present model) and a low density array (equivalent 
to the coincidence lattice sub-boundary in the present 
model). Indeed, the one significant difference in the 
des~~ption of the high angle boundary given here 
compared to that given by Read and Shockley(7) is 
that in the present model the concept of a dense 
dislocation array has been dropped in favour of the 
coincidence lattice description. This difference is 
important for three reasons : 

Firstly, the ambiguity in the definition of the 
Burgers vector of a dislocation at a high-angle 
boundary is avoided by referring all such definitions 
to the coincidence lattice, which is common to both 
grains. Secondly, the difficulty in estimating the core 
interaction of densely packed ~slocations without 
at the same time ignoring the structural relationship 
between the two grains is avoided. Finally, the 
use of the coincidence lattice description avoids the 
difficulty associated with alternative descriptions of 
the same boundary arising from the multiplicity of 
axis-angle pairs generating the same coincidence lattice. 

5. PREDICTIONS FROM THE MODEL 

As should be clear from Section 3, the present 
model is not a general description of a high angle 
boundary. Indeed, one of the conclusions to be 
drawn from the present model is that such a descrip- 
tion is not possible. However, the large number of 
axis-angle pairs describing a single coincidence 
lattice, taken together with the deviations from 
coincidence that can be accommodated by a sub- 
boundary dislocation network, should ensure that a 
high proportion of the boundaries in any poly 
crystalline sample can be described in terms of the 
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present model. This proportion should be higher than 
would be calculated on the basis of random nucleation, 
both because nucleation is seldom random and because 
boundaries falling outside the range of validity of the 
model should have, on average, significantly lower 
mobilities@) and higher energies.(‘) 

A boundary based on the present model has the 
following characteristics : 

Its axis and angle of miso~entation lie within a 
few degrees of a coincidence relations~~. 
It contains a step structure dependent on the 
angle between the boundary plane and the 
densely packed planes of the coincidence lattice. 
It has superimposed upon it a dislocation net- 
work constituting a subboundary in the coin- 
cidence lattice. 

As corollaries of these characteristics : 

(4 

(ii) 

(iii) 

The boundary is anisotropic, regions of disorder 
alternating with regions of coincidence. 
The boundary is non-planar, but contains steps 
which are disordered regions. 
There is an elastic strain-field associated with 
the boundary arising from the presence of the 
dislocation network. 

It should be noted that the presence of ledges(11*12) 
and dislocations(13~ at the boundary arises naturally 
out of the model and is not arbitrarily introduced to 
account for experimental observations. Also nothing 
has been said about the energy of the boundary, which 
must depend on structure, but can only be deduced 
approxima~ly.(‘*l”) 

The variations in boundary structure predicted by 
the present model are expected to show up in those 
properties which are strongly structure sensitive: 
segregation to the boundary,(s) grain boundary 
diffusion,(14) and grain boundary migrationcs) are all 

known to depend on the boundary structure; dis- 
location generation at a boundaryo5) and slip 
propagation across a boundaryu6) also exhibit 
considerable structure dependence. 

6. CONCLUSIONS 

A description has been given of a model for high- 
angle grain boundaries based on an extension and 
combination of the coincidence lattice model of 
Kronberg and Wlson(2) and the dislocation model of 
Read and Shoo~ey.(s) The range of validity of the 
model and the characteristics and properties of grain 
boundaries falling within this range of validity have 
been described. 
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